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Abstract

In this study, we addressed impacts of natural disasters on economic status in coastal and disaster-prone areas within the context of
previous theoretical and empirical literature. Our spatio-temporal model accounted for nonlinear causality and spatial heterogeneity
in assessment of unexpected disaster events employing a Matérn covariance structure, an empirical variogram, kriging, spatial
regression, and spatial-temporal model. Empirically, we developed this model to estimate the natural disaster risk using county-level
data in the U.S. State of Florida. Despite high prediction errors, empirical results suggest that both Atlantic and Gulf Coast counties
experienced significant negative economic impacts of natural disasters. 
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1. Introduction

The damages and losses caused by unexpected disaster events

(both natural and human-induced) have sudden and significant

impacts on economic conditions and the environment (Alexander,

2000; Burton and Kates, 1964; Daniels et al., 2006; Drabek,

1989; Turner, 1976). In general economic terms, unexpected events

may be viewed as a sudden loss of continuity in economic

processes and as something that slows the pace of development.

One of the critically important issues related to minimizing these

losses is the temporal configuration for identifying economic

conditions before and after the events (Alexander, 2000; Drabek,

1989). Prior research has focused mainly on identification of

economic situations for a given study period using static and

deterministic models (e.g., models constructed using input-

output analysis and computable general equilibrium) (Ham et al.,

2005; Okuyama et al., 2004).

However, previous studies of natural disasters effects (e.g.,

Alexander, 2000; Daniels et al., 2006) tend not to accurately

reflect the spatial-temporal characteristics of economic situations

or social systems affected by unexpected disaster events.

Furthermore, the results of previous research generally lack

spatio-temporal changes even though the impacts of non-routine

events have changed over time. Specifically, they generally do

not consider non-linear phenomena, quality of uncertainty, spatial

heterogeneity, randomness, unstable environmental characteristics,

and stochastic processes. In order to overcome these issues, our

contribution underscores the spatio-temporal characteristics and

change brought about by unexpected events and deals with

economies modified by theoretical and analytical frameworks or

procedures.

In an attempt to estimate disaster damage to economies based

on spatio-temporal statistical models, longitudinal data were

collected on the economies and disaster losses at the county level

during 20 years from 1990 through 2009 in the US State of

Florida. Time series data was developed from a variety of

databases including U.S. Census Bureau (USCB), National

Ocean Economic Program Coastal Economy Data (NOEP), Spatial

Hazard Events and Losses Database in U.S. (SHELDUS),

National Hurricane Center (NHC), and the Beaches and Shores

Center in Florida State University (BSC). 

The counties in Florida are ideal for addressing the economic

impacts of natural disasters due to the regularity of hurricanes

during the study period (e.g., Hurricane Opal, 1995; Earl and

George, 1998; Frances and Jeanne, 2004; Katrina, 2005).

Economic data including unemployment rate and poverty levels

used in this spatial-temporal modeling originates from USCB

and NOEP in a similar fashion to previous research by Cutter et

al. (2003) and Toya and Skidmore (2007). In addition, data on

disaster damage including fatalities, injuries, property damage

and crop damage at the county-level was obtained from the

SHELDUS, BSC, and NHC databases. Whereas human damage

refers to fatalities and injuries as a percentage of population in

each county; physical damage indicates crop and property losses
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as a percentage of crops and property in each county in Florida.

With an integrative approach to social-ecological systems, our

work rests on several research objectives. These involve outlining

the analytical processes behind estimating economic impacts of

natural disasters using spatio-temporal data using a case study

region. Further, we estimate the risk of unexpected disaster

events on county-level economic status during the last 20 years.

Following this introduction, we present this spatio-temporal case

in four subsequent sections. First, we summarize the extant

knowledge to define economic loss from natural disaster events.

Next, we develop our analytical model that incorporates both

unique geographic space and time. The next section summarizes

our empirical results. We conclude with a summary of our work

and further research needs.

2. Economic Losses from Natural Disasters

Damage from natural disasters relates to the ability of an

affected region/county to deal with the impact of natural hazards

and withstand potential negative consequences while coping

with the resulting damage in a timely manner (Cutter et al.,

2003; Mileti, 1991). Furthermore, impacts are the outcome of the

interaction between exogenous factors determined by the

incidence (i.e., frequency) and intensity (i.e., severity) of disasters

and the ability of a country/region to deal with the impact of

endogenous elements or factors (Sadowski and Sutter, 2005).

The association between the impacts of natural disasters and

economies includes both broad and specific damage in accordance

with spatial areas such as a region or country. Broad damage in

regional areas is related to economic losses to diverse industrial

sectors. Natural disaster damage involves economic loss to

personal property and commercial and industrial businesses

(Ewing et al., 2009). As one would predict, greater losses from

disasters lead to weaker economies than before the disaster

occurred (Sadowski and Sutter, 2005).

Similarly, natural disaster exposure has been found to be

negatively correlated with initial per capita gross domestic product

(Kahn, 2005; Yang, 2008). In essence, richer nations experience

fewer or weaker disaster results than those experienced by poorer

nations (Kahn, 2005; Kellenberg and Mobarak, 2008). In the

case of an equal quantity and intensity of disaster shocks, people

in rich nations suffer fewer deaths from natural disasters than

those in poor nations. As might be expected, hurricanes and

accompanying disasters have had a negative impact on the labor

market. 

Based on the differences between economic losses and natural

disaster damage, a conceptual framework has been developed to

provide the theoretical basis and applications for a spatial-

temporal statistical model. This framework illustrates the socio-

economic impacts and consequences of natural disasters,

particularly hurricanes in Florida. The natural disasters factor

(T+α, T means time and α, β, and γ indicate time order), as a part

of the exogenous shocks, was examined to determine which

factors contributed to the increase or decrease in disaster losses

(Raddatz, 2007) in accordance with spatial configuration of

existing area (T) before natural disasters (e.g., populated coastal

area, developed areas). The disaster losses factor after a disaster

(T+β) involves human losses (i.e., fatalities and injuries) and

physical damage (i.e., property and crop damage). The disaster

losses contribute to the increase or decrease in economic status

before a natural disaster (T+γ). In the empirical evidence, the

economic factor includes the unemployment rate and poverty

rate as noted by previous studies (Cutter et al., 2003; Ewing et

al., 2009). 

3. Analytical Framework and Model Specification

Based on the theoretical basis, an analytical framework or

procedure has been formulated as illustrated in Fig. 1. First, to

estimate parameters and develop a variogram in spatial-temporal

Fig. 1. Analytical Procedure
Note, MLE: Maximum Likelihood Estimation, OLS: Ordinary Least Square, WLS: Weighted Least Square, REML: Restricted Maximum Likelihood
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data, a covariance matrix, M’(x) using a Matérn covariance

structure was employed as in the following equation (Gneiting

and Sasvari, 1999; Matérn, 1986; Schabenberger and Gotway,

2005; Stein, 2005): 

(1)

There are four parameters that need to be estimated: α

represents sill; β means range; v indicates smoothness, and ε is

nugget effect. Furthermore, an empirical variogram to assess

spatial autocorrelation was plotted. Based on the Matérn

covariance matrix, the variogram parameters were estimated

using maximum likelihood estimation (hereafter MLE), restricted

maximum likelihood (hereafter REML) methods, ordinary least

squares (hereafter OLS), and weighted least squares (hereafter

WLS) (Christakos, 1992; Corbeil and Searle, 1976; Cressie,

1993; Gneiting and Sasvari, 1999; Matérn, 1986; Schabenberger

and Gotway, 2005). Fitted lines based on the variogram plot

were added to determine how well the lines fit the data.

To interpolate values in a random field at unobserved locations

from neighboring locations, kriging was employed (Haining,

2003; Schabenberger and Gotway, 2005). Kriging, in a basic

sense, is the best linear unbiased prediction. Based on the

stochastic properties of the random fields, three different types

exist (i.e., simple kriging, ordinary kriging, and universal kriging).

Each type determines the linear constraint on the weights

implied by the unbiasedness (Schabenberger and Gotway, 2005).

The method for calibrating the weights depends on the type of

kriging. 

In accordance with basic assumption in kriging, simple kriging

has a known constant mean. While ordinary kriging assumes an

unknown constant mean, universal kriging employs a general

linear model for mean. To apply simple kriging to this study,

63% of the locations (42 among 67 total counties in Florida)

were selected in that property damage rates were originally

available during study period. As a result, it was possible to

compare selected data to the interpolated values. The property

damage rate,  with the overall mean was subtracted from

the data with a mean of zero as follows:

(2)

where, , , ,

 means the number of selected study areas (i.e.,

counties affected by natural disasters). In an effort to fit a Matérn

covariance and estimate the parameters such as sill (α), range

(β), smoothness (v), and nugget (ε), the training data (i.e., 63% of

the locations) was used in the model. The difference between the

interpolated values and original ones at each location is

employed to assess the kriging. When it comes to ordinary

kriging, data for property damage rates was used without

subtracting the overall mean. The linear specification, L(s) is

fitted to the training data with the remaining 37% of locations:

(3)

where, α0, α1, α2, and α3 indicate coefficients for intercept,

latitude, longitude, and poverty rate, respectively. Using the

training data to estimate covariance parameters and fit those

parameters to locations, the differences between interpolated

values and original ones can be obtained.

With an emphasis on spatial characteristics, a spatial regression

model of property damage rates,  with covariates was

employed with a fitting variogram as the following specification:

(4)

where,  is Gaussian random error, , where Σ
is the covariance structure, γ0 , γ1, γ2, and γ3 are coefficients for

intercept, latitude, longitude, and poverty rate, respectively. By

employing the Matérn covariance matrix estimation, we attempted

to fit the covariance function of the regression residuals assumed

as isotropic. The covariance function was fitted with different

analytical methods, including MLE and REML. 

Prior to spatial-temporal analysis, identifying whether or not

the data is stationary should be taken into account for the

minimization of biases. As employed in numerous research

(Finkenstädt et al., 2007; Haining, 2003; Harris et al., 2010;

Lloyd, 2010; Ma, 2005; Schabenberger and Gotway, 2005), both

moving windows and weighted stationary approaches were used

to detect whether or not the data was stationary in different

locations. The moving window approach divides the whole

random field into sub-regions and assumes that the processes in

the sub-regions are stationary or isotropic. This approach

contributes to fit a variogram in each sub-region. On the other

hand, the weighted stationary approach, P(s) is used in a non-

stationary process as the following equation:

(5)

Pi(s) is uncorrelated, and has the same covariance function

with different parameter. In line with time lag effects as well as

distance in space, a spatial-temporal model can be divided into a

separable and a non-separable (Iaco et al., 2002; Ma, 2005). 

4. Empirical Findings

4.1 Descriptive Statistics 

On the basis of the analytical framework or procedure, an

empirical approach was developed to provide an application for

economic loss estimation as a result of hurricanes damage.

Florida (comprised of 67 counties) as a study area is a long and

narrow state and can be divided into eight regions. Table 1 shows

descriptive statistics of the property damage rate in eight areas

during the last 20 years. The rate indicates property damage

(adjusted to 2009 US dollars) divided by each area (square

miles). The total damage rate in 67 counties is about 288,200.

The hurricanes ruined a great deal of property in the central east

area resulting in a damage rate of 1,033,200, which is four times

the total average. The central west and south west area also had

huge property losses, with 658,095 and 635,137 damage rates,

M′ x( ) α
x

β
---⎝ ⎠
⎛ ⎞v  M′v

x

β
---⎝ ⎠
⎛ ⎞=

P S0( )

P S0( ) C
1–

cP=

P= P S1( )…P S42( )[ ] C=Cov P P,( ) c=Cov P P S0( ),[ ]
S1( )… S42( )

L s( ) α0 α1Latitude α2Longitude α3Poverty rate+ + +=

P′ s( )

P′ s( ) γ0 γ1Latitude γ2Longitude γ3Poverty rate s( ) ε s( )+ + + +=

ε s( ) ε s( ) N 0 Σ,( )∼

P s( ) wi s( )Pi s( )
i 1=∑=
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respectively. Due to hurricanes coming from the Atlantic Ocean

and making land fall on the eastern coast of Florida (crossing

over to the Gulf of Mexico), the central east, central west, and

south west areas had greater damage than other areas. 

In light of spatial configuration, some counties were not

affected by such hurricanes, and revealed no property damage at

all. Therefore, we re-analyzed the data to exclude the non-

damaged areas (see Model 2 in Table 1). There were 42 counties

affected by hurricanes and the average damage rate was about

456,592. This result indicates a 1.5 times higher property

damage rate over the other counties. Hurricanes were most

destructive in the central east, resulting in a 1,291,536 damage

rate. The central west and south west also had huge property

losses, at 658,094 and 635,136, respectively. It is important to

note that damage rates have not changed that much for the 67

counties in general or the 42 counties specifically. This finding

indicates that whereas all the counties in the central west and

southwest were affected by hurricanes, the central area, in

particular Marion county, shows an increase in property damage

rate. 

In order to examine the data distribution, a histogram and box

plot regarding property damage rates before and after transformation

were addressed. Half of the data were within the 500,000 damage

rate, with minimal outliers on the box plot. After removing the

counties not affected by hurricanes, no outliers remained for the

42 counties in the box plot. The histogram did not look like a

classic bell-shaped (i.e., symmetric histogram) with most of the

frequency counts bunched in the middle. This shape indicated

that the data used in this study did not follow a normal

distribution. Further, to examine the normality of the data, a Q-Q

plot was utilized and revealed property damage rates in all the

counties (67 counties) and hurricane-affected counties (42

counties). None had a normal distribution and most fell far from

the 45-degree line. The point pattern was curved with the slope

increasing from left to right and was skewed to the right. To

transform the data into a normal distribution, a Box-Cox method

was conducted (Nelson and Granger, 1979; Spitzer, 1984; Velilla,

1993). 

4.2 Variogram 

As illustrated in Table 1, since the property damage rate value

was quite large, the variable was scaled down by 1,000,000. An

empirical variogram cloud and box plots showed a spatial

dependency among variables and the transformed data were not

isotropic. Based on the direction variogram, whether or not the

data was geometrically anisotropic was taken into account

(Ecker and Gelfand, 1999; Schabenberger and Gotway, 2005).

Given the distance is above 6, covariance rapidly increases in

135 degrees and 45 degrees. On the other hand, if the distance is

below 6, there is no similar pattern at all. Therefore, it is difficult

to determine that the data is geometrically anisotropic.

In an effort to estimate the covariance parameter and maximize

the likelihood, the nlm ( ) function in R statistical software was

employed as suggested by Paciorek and Schervish (2006) and

Jun and Stein (2007). The findings indicated a non-positive

definite or infinite value. Given that the nlm ( ) function is to

iterate new parameter values, the parameters of the Matérn

covariance function can be too extreme. The covariance cannot

be positive definite and produce some infinite values.

Accordingly, the optim ( ) function in R was used to search for

an appropriate initial point (Cressie, 1993; Ribeiro and Diggle,

2001). In line with the optim ( ) function, the parameters were

transformed in an effort to determine the most efficient method

among MLE, OLS, and WLS (see Table 2). Since MLE shows

better parameter estimation rather than WLS and OLS, it was

employed to estimate kriging.

 4.3 Kriging 

As mentioned earlier, due to the estimated covariance structure

and the zero-mean process, we employed a simple kriging

method. As such, the data used in this study was divided into

training data and predicted data. While the training data means

the observed data with latitude ranging from 27 and 30.5 degree

(i.e., 27 data points), predicted data indicates the other 15 data

points (except for 27 data points). Furthermore, whereas training

data was used to estimate the parameter in the Matérn covariance

function, predicted data was employed to predict the value at the

prediction data points. 

In the context of spatial configuration, the simple kriging

shows that there is a bigger difference for the southwest counties

(e.g., Escambia, Santa Rosa, and Okaloosa) near the Gulf of

Table 1. Descriptive Statistics on Property Losses

Model 1 Model 2

Mean SD Mean SD

Region I 67,559 202,677 608,033 -

Region II 1,033,228 776,297 1,291,536 598,915

Region III 658,094 854,761 658,094 854,761

Region IV 5,134 5,162 9,127 2,996

Region V 5 15 41 -

Region VI 401,861 730,187 401,861 730,187

Region VII 38,301 37,483 63,835 19,105

Region VIII 635,136 748,697 635,136 748,697

Number of 
observations 

67 42

Note: SD is standard deviation, Model 1 is property damage rate and
Model 2 is damage rate without zero, Region I : central Florida, Region
II: central east in Florida, Region III: central west in Florida, Region IV:
north central in Florida, Region V: north east in Florida, Region VI:
north west in Florida, Region VII: south east in Florida, Region VII:
south west in Florida 

Table 2. Comparison of Variogram Estimation 

α β v δ

MLE 0.089 26.297 2.999 0.044

OLS 0.413 1.000 2.999 0.000

WLS 0.524 25.956 1.546 0.000

Note: MLE: maximum likelihood estimation, OLS: ordinary least square,
WLS: weighted least square
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Mexico. In addition, Palm Beach, Broward, and Miami-Dade

counties which border the Atlantic Ocean show higher prediction

error than other counties. Similarly, ordinary kriging was

conducted based on REML. Southwest counties (e.g., Palm

Beach, Broward, and Miami-Dade) in the study area, show

higher prediction errors than other counties.

4.4 Spatial Regression and Non-stationary

On the ground of the kriging estimation, scatter plots of

property damage rates versus various covariates were checked in

accordance with longitude, latitude, and poverty rate. From this

plot, we conclude that it seems reasonable to fit longitude,

latitude and poverty rate in the mean model. As shown in Table

3, the estimated value with the coefficients of longitude, latitude,

and poverty rate indicates significance at the 0.05 and 0.01 alpha

levels. The spatial regression of property damage (P) equation

can be addressed as follows: 

 (6)

The residuals are approximately normal. In an attempt to

estimate Matérn covariance parameters using MLE and REML,

the normalized residuals are used. The positive association

between poverty rate and property damage rate is supported by

the works of Ewing et al. (2009) and Sadowski and Sutter

(2005).

Given the data have a longitudinal property, it is essential to

identify whether or not the data are stationary in order to

decrease bias in the process of analysis. The first method for non-

stationary covariance model is moving window (Finkenstädt et al.,

2007; Lloyd, 2010; Ma, 2005). Our domain in this study was

divided into nine sub-domains: groups A, B, C, and D (non-

affected counties from hurricanes) and groups E, F, G, H, and I

(hurricane-affected counties). The basic assumptions for the data

using the moving window method indicate that each region has a

Matérn covariance model structure and the data from different

regions are uncorrelated. 

As shown in Table 4, the estimated parameters are quite

different from each other. Since the data have clustering points,

property damage rates from hurricanes are quite different in

accordance with location. This finding would be clearer on the

variogram plot (see Fig. 2). However, there are problems that the

estimated α is too small (almost 0) and v is close to the boundary

value. The result was similar to the old data with prior to

transformation, scaling, and having few data points (see Table 4).

Since v is quite close to the boundary value, the variogram was

shown as flat. The finding indicates that the data used in this

study is non-stationary. 

 4.5 Spatial-Temporal Model 

Natural disasters do not happen every year and result in

different impacts each time they occur. Even though certain

counties or regions have been damaged in distinct years, the

possibility to predict damage in subsequent years exists. Among

the study periods and areas, two consecutive years (2004 to

2005) with severe two hurricanes (i.e., Frances and Jeanne) and

35 counties affected hurricane were selected. 

Both space and time with a separable influence on the data

was assumed in the separable exponential model (O’connell

and Wolfinger, 1997). Based on spatial distance (d) and time

lag (T), the result of MLE estimators and equations,  is

as follows: 

 (7)

α = 0.719 [0.398], δ1 = 0.050 [22.548], δ2 = 222.170 [133.926]

In this equation, both time and space distance with an exponential

covariance were assumed. Given the model is difficult to estimate,

another separable model (e.g., separable Matérn model) can be

employed.

P 2.797 5.299[ ]– 0.349 0.092[ ]Latitude–  –=

      0.16 0.122[ ]Longitude 3.19e +

     06– 1.68e 06–[ ]Poverty rate

S T d,( )

S T d,( ) αexp
T

δ1

----–⎝ ⎠
⎛ ⎞ d

δ2

----–⎝ ⎠
⎛ ⎞,exp=

Table 3. Spatial Regression Results

Parameter SD t value

Intercept -2.79700 5.299 -0.528

Longitude -0.161*0 0.092 -1.743

Latitude -0.349** 0.122 -2.847

Poverty rate -3.19e-06* 1.68e-06 -1.898

Note: * : significant at 10%, **: significant at 5%

Table 4. MLE and Moving Window Estimation in Disaster-affected Areas

α β v δ Mean Nugget Function value

Group E
MLE 5.149e-13 13.650 2.999 2.557e-12 -4.415e-06 -518.368

MW 775.768 3.574 3.000 9.075e-119 87.467 51.242

Group F
MLE 4.887e-13 10.020 3.000 2.595e-12 -5.927e-06 -542.501

MW 606.112 1.828 3.000 3.887e-05 68.018 41.787

Group G
MLE 1.263e-12 0.031 3.000 2.074e-12 -5.021e-06 -580.413

MW 85.801 11.137 3.000 1.110e-16 94.038 30.117

Group H
MLE 5.197e-11 4.366e+08 0.135 6.156e-12 -5.625e-06 -781.610

MW 6.768e-11 2.815e+15 2.732 2.123e-02 0.854 -12.833

Group I
MLE 3.943e-12 5.297e+01 0.106 4.467e-27 -8.09e-06 -225.792

MW 79.635 14.885 3.000 3.3501e-09 11.851 20.997

Note: MLE: maximum likelihood estimation, MW : moving window
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Similar to the separable exponential model, both space and

time with a separable influence on the data were assumed in the

separable Matérn model. In general, Matérn covariance structure

is more flexible than this model (Finkenstädt et al., 2007; Haas,

2002). Based on the covariance structure, the result of MLE

estimators and specification is as follows: 

(8)

α = 0.706 [0.349], δ1= 8.820 [2.060], v1 = 0.895 [0.293],

   δ2 = 0.044 [4.770], 

v2 =2.590 [0.004], nugget = 2.360 [0.870]

Since spatial-temporal data cannot be separated into distinct

time and space, it is crucial to take into consideration a more

comprehensive and flexible model. In this case, non-separable

models can be used to address this restriction (Finkenstädt et al.,

2007; Haas, 2002). In terms of the covariance structure used in

the non-separable exponential model, the MLE estimators and

quation  are as follows: 

(9)

α = 0.529 [0.089], α = 17.659 [58.703], s = 0.891

On the other hand, based on the covariance structure used in

the non-separable Matérn model, the finding of MLE equation

 and estimators is as follows: 

 (10)

where, D = , α = 6.72e-2 [0.021], δ1 = 28.800

[4.080], δ2 = 0.013 [0.001], v = 3 [1.180], nugget = 0.002 [0.007]

In accordance with two different time points, fitted lines within

spatial-temporal models versus the empirical variogram were

estimated. Based on the above statistical finding, the separable

model was more easily conducted than the non-separable model.

That is why the data used in this study is annual and the time

effect points are independent. 

S T d,( ) α
d

δ1

----⎝ ⎠
⎛ ⎞

v1

Kv1

d
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⎛ ⎞ T

δ2

-----⎝ ⎠
⎛ ⎞

v2

Kv2

T

δ2

-----⎝ ⎠
⎛ ⎞ nugget+=

S T d,( )

S T d,( ) α

aT
2

1+
----------------exp

sd
2

–
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2

1+
----------------=

S T d,( )

S T d,( ) α D vKv D( ) nugget+=

d

δ1
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⎛ ⎞

2 T

δ2
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+

Fig. 2. Empirical vs. Estimated Variogram of: (a) Group E, (b) Group F, (c) Group G, (d) Group H, (e) Group I
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5. Conclusions

In this study we demonstrated the risk and estimated the

impact of natural disasters on county-level economic status in

coastal and disaster-prone areas using spatio-temporal statistical

models. These models were developed to account for nonlinear

causality and spatial heterogeneity to assess chance of

unexpected events. A variety of analytical procedures to estimate

the natural disaster risk in this study area were employed. This

work is different from prior research in that it encompasses a

conceptual framework and an analytical procedure including a

Matérn covariance structure, an empirical variogram, kriging,

spatial regression based on covariance estimation, and a spatial-

temporal model. In terms of the empirical variogram along with

the Matérn covariance structure, whereas the plot of the

variogram looked reasonable and was a best fit using the MLE,

the variogram parameters using the OLS were not reasonable.

Similar to previous studies (e.g., Cutter and Finch, 2008), the

reason for this result is that the data (i.e., property damage rate,

poverty rate) has a non-stationary and a spatial autocorrelation in

accordance with the spatial domain.

The analytical procedure for addressing diverse risk estimation

modeling was implemented and tested using spatial-temporal

characteristics. It found appropriate modeling for risk estimation

after unexpected events considering the spatial-temporal variation

in relation to economic aspects. The challenge of implementation

was integrating the different components (e.g., hurricane wind

speed, track, intensity, pressure) that have been developed by

other fields (e.g., geophysics, meteorology, ecology). 

Certainly, limitations of this work lead to further research to

improve the robustness of our results. Statistical procedures are

likely not efficient with large data sets developed to address

fatality and injury from natural disasters at the sub-county level.

In order to overcome this drawback, it is necessary to employ

various computing systems (e.g., GeoDa, Geographically Weighted

Regression, Remote sensing, Geographical Information System),

primarily have been applied in environmental assessment

studies (Kumar and Pandey, 2013). Furthermore, in an effort to

search out initial settings or damage to the property, this

research needs to adopt a method to simulate natural disasters

such as floods as has been done in previous studies (Sohn et al.,

2003). Despite these limitations, this work addresses an

overview of natural disaster risk estimation from spatial-

temporal statistical perspectives in hazard-prone areas. Such a

theoretical and practical approach can help remove the

limitations of previous related studies (i.e., consideration of

nonlinear causality regarding unexpected events). Furthermore,

this study can suggest fundamental applications useful in risk

analysis in relation to spatial and temporal situations.
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